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Abstract

A system consisting of two parallel coupled channels where particles in one
of them follow the rules of totally asymmetric exclusion processes (TASEP)
and in another one move as in symmetric simple exclusion processes (SSEP)
is investigated theoretically. Particles interact with each other via hard-core
exclusion potential, and in the asymmetric channel they can only hop in one
direction, while on the symmetric lattice particles jump in both directions
with equal probabilities. Inter-channel transitions are also allowed at every
site of both lattices. Stationary state properties of the system are solved
exactly in the limit of strong couplings between the channels. It is shown
that strong symmetric couplings between totally asymmetric and symmetric
channels lead to an effective partially asymmetric simple exclusion process
(PASEP) and properties of both channels become almost identical. However,
strong asymmetric couplings between symmetric and asymmetric channels
yield an effective TASEP with nonzero particle flux in the asymmetric channel
and zero flux on the symmetric lattice. For intermediate strength of couplings
between the lattices a vertical-cluster mean-field method is developed. This
approximate approach treats exactly particle dynamics during the vertical
transitions between the channels and it neglects the correlations along the
channels. Our calculations show that in all cases there are three stationary
phases defined by particle dynamics at entrances, at exits or in the bulk of
the system, while phase boundaries depend on the strength and symmetry of
couplings between the channels. Extensive Monte Carlo computer simulations
strongly support our theoretical predictions. Theoretical calculations and
computer simulations predict that inter-channel couplings have a strong effect
on stationary properties. It is also argued that our results might be relevant for
understanding multi-particle dynamics of motor proteins.
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1. Introduction

The majority of systems in nature operate far from equilibrium, but there is no developed
theoretical framework for comprehensive analysis of non-equilibrium processes. In this
situation, a critical role for understanding different complex phenomena in Chemistry, Physics
and Biology is played by a class of low-dimensional non-equilibrium multi-particle models
known as asymmetric simple exclusion processes (ASEP) [1–5]. ASEP are stochastic
models where particle interact via an exclusion potential and move along discrete lattices.
Mechanisms of many non-equilibrium processes, such as biological transport, kinetics of
protein synthesis and biopolymerization, car traffic, and hopping of quantum dots, have
become better understood due to the successful description via asymmetric exclusion models
[6–18].

Most theoretical studies of exclusion processes concentrate on single-lane systems where
important exact solutions have been obtained in several cases [1, 4]. Recently, a lot of attention
has also been devoted to parallel multi-chain exclusion processes [19–30]. The study of these
models has been greatly stimulated by experimental advances in analysis of motor proteins
dynamics along cytoskeleton filaments, in transport of mesoscopic quantum systems and in
vehicular traffic processes [17, 27, 31]. In parallel multi-chain exclusion processes particles
can jump along the horizontal chains, but they can also switch stochastically between different
lanes. Theoretical analysis of different multi-chain ASEP suggests that coupling between the
channels strongly influences stationary-state phases and particle properties. It can produce a
complex dynamic behavior, leading to many unusual phenomena, such as localized domain
walls and symmetry breaking [24, 27, 28, 30].

Investigations of multi-chain exclusion processes mostly involve coupling of asymmetric
channels where the direction of particles motion is biased at each site on all channels. The aim
of the present paper is to analyze parallel coupling of symmetric and asymmetric exclusion
processes. The problem is motivated by the cellular transport of motor proteins along rigid
protein filaments such as actin filaments or microtubules [31]. Motor protein molecules can
move mostly in one direction when they are tightly bound to protein lattices. Occasionally,
motor proteins might dissociate from the filament to the surrounding solution where they
perform unbiased diffusional motion. Freely diffusing molecules can also bind to protein
filaments. There is only one previous theoretical work that investigates coupling of totally
asymmetric exclusion processes (TASEP) and symmetric simple exclusion processes (SSEP)
although periodic boundary conditions and symmetric transition rates between the lanes are
assumed [32]. Using several mean-field approaches and extensive computer simulations it was
found that there is unequal redistribution of particles between different channels depending
on the densities [32]. In a related study, Lipowsky and coworkers investigated transport
of molecular motors in open tube that contains a single filament [11, 13]. Bound to the
filament particles undergoes asymmetric exclusion process, while the unbound molecular
motors diffuse freely in the tube around the linear chain. The analysis of the molecular motor
transport via tube-like compartments, performed with the help of mean-field methods and
Monte Carlo simulations, revealed that there are three stationary phases with phase transitions
specified by the precise choice of boundary conditions [11]. In our work we investigate a two-
channel system consisting asymmetric and symmetric exclusion lanes with open boundary
conditions, and with symmetric and asymmetric transition rates between the channels.

This paper is organized as follows. In section 2, a detailed description of the model is
given, and exact solutions for strong couplings and approximate solutions for intermediate
couplings are presented. In section 3, we discuss Monte Carlo computer simulations and
compare them with theoretical predictions. The final section 4 summarizes and concludes.
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Figure 1. Schematic picture of two-channel system that couples symmetric and asymmetric
exclusion processes. On the lattice 1 (upper) particles can move only to the right, while on the
lattice 2 (lower) there is no preference in the direction of motion. The inter-channel transitions
rates are w1 and w2. Allowed transitions are shown by arrows. Entrance rates at both lattices are
equal to α and exit rates are equal to β.

2. Theoretical analysis

2.1. Model

Our model consists of two parallel one-dimensional lattices as illustrated in figure 1. Both
lanes have L sites, and we are interested in obtaining thermodynamic limit results when
L � 1. Particles move along the channels by hopping between the lattice sites with the
exclusion potential, i.e., each site can be occupied by no more than one particle. In our model
we apply a random sequential update when at each time step dynamics at randomly chosen
site is followed. Particles can enter the system with the rate 0 < α � 1 if one or both first
sites on channel 1 and 2 are not occupied. Similarly, particles exit the system with the rate
0 < β � 1 if any of last sites are occupied. Note, that the particle in the first site of lattice 2
cannot exit to the left; similarly, no particle can enter the lattice 2 from the right. In the bulk of
the system dynamic rules depend on the lattice: see figure 1. The particle at site i can switch
to the same site on the lattice 2 with the rate w1 if this site is empty, or with the rate 1 − w1

it hops to unoccupied site i + 1 on the lattice 1. However, if the site i in the second channel
is occupied, the particle jumps in the horizontal direction to the right with the rate 1 if the
forward site is available. The particle at the site i on the lattice 2 can move vertically with the
rate w2 if the upper site i is free, or it can jump horizontally in either direction with the rate
(1 −w2)/2 if sites i + 1 or i − 1 are available. However, if the upper site i is already occupied,
the particle can move with the rate 1/2 in the forward or backward directions, assuming that
any of these moves are not blocked by already present particles at sites i − 1 or i + 1. The
total transition rate out of every site i in any channel is equal to 1. When the transition rates
between the channels are equal (w1 = w2) the coupling is symmetric, while for w1 �= w2 the
coupling between the lattices is asymmetric. It should be noted that different entrance/exit
rates can be used for particles in symmetric and asymmetric lanes, however, it can be shown
that it does not change much dynamics in the system. In this paper we will only consider the
simplest case of the same α and β as entrance and exit rates in both channels.

When the inter-channel transition rates are equal to zero (w1 = w2 = 0), the system
decouples into two independent single-lane exclusion processes: the upper channel becomes
a totally asymmetric process and the lower channel is a symmetric process. Exact solutions
for single-lane TASEP and SSEP are known [1, 5], and they provide a full description of all
dynamic properties at large times. For TASEP there are three stationary-state phases. If the
entrance to the lattice is a rate-limiting step, which happens for α < β and α < 1/2, the
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system is found in a low-density (LD) phase with the particle current and bulk density given
by

JLD = α(1 − α), ρbulk,LD = α. (1)

However, when exit of particles controls the overall dynamics (β < α and β < 1/2), the
system is in a high-density (HD) phase where the stationary current and bulk density are

JHD = β(1 − β), ρbulk,HD = 1 − β. (2)

In the third phase, called a maximal-current (MC), the dynamics is governed by bulk processes
(α > 1/2 and β > 1/2), and stationary properties are the following,

JMC = 1
4 , ρbulk,MC = 1

2 . (3)

The stationary properties of SSEP are much simpler with only one non-equilibrium phase
at all conditions [5]. For the lattice with L sites the density profile is linear,

ρ = L − i + 1/β

L + 1/α + 1/β − 1
. (4)

The average current in the steady-state of SSEP is given by

J = 1

L + 1/α + 1/β − 1
. (5)

It can be easily seen that in the limit of L → ∞ the current in the SSEP is approaching zero.
There are very few exact results for multi-channel exclusion processes obtained by

mapping them into effective single-lane exclusion models [20]. Typical approaches to analyze
coupled multi-channel systems involve various mean-field treatments supported by computer
simulations [19–30]. Probably, one of the most successful approximate approaches is a
vertical-cluster mean-field method [20, 24, 26, 29] that describes the dynamics of inter-
channel transitions explicitly and neglects correlations for horizontal transitions. We will also
utilize this method for analyzing parallel coupling between TASEP and SSEP. Each vertical
cluster can be described by introducing functions Pij (i, j = 0, 1) that define the probability
of different states. P00 corresponds to the state when both sites of the vertical cluster are
empty, P11 describes the state with both sites occupied, and P10 and P01 specify partially filled
vertical clusters with the occupied site on the channel 1 or 2, respectively. These probability
functions are related via a normalization condition,

P00 + P10 + P01 + P11 = 1. (6)

2.2. Strong couplings: exact results

In order to understand mechanisms of coupling between TASEP and SSEP, it is instructive
to consider strong coupling regimes. First, let us analyze the case of symmetric coupling
with w1 = w2 = 1. In this case in the stationary-state limit it is not possible to observe the
vertical configuration {00} with two empty sites. This is because this configuration can only
be obtained by moving the particle horizontally if the previous state of the same cluster was
{10} or {01}. However, the rates for these transitions are zero (1 − w1 = 1 − w2 = 0), and
we conclude that for any bulk vertical cluster P00 = 0. It can also be argued that symmetry
of the coupling requires having P01 = P10 for any bulk vertical cluster. Then in the system
there are only two types of vertical clusters: half-filled and fully filled. One can view {11}
vertical clusters as effective ‘particles’ and half-filled vertical clusters as effective ‘holes’.
These ‘particles’ can advance forward with the rate p = 3/4, or they can move backward with
the rate q = 1/4. They enter the system with the effective rate αeff = α and leave it with
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the effective rate βeff = 2β. The factor 2 comes from the fact that in the last vertical cluster
both particles can exit independently. Thus the two-channel system is mapped into a new
effective single-channel partially asymmetric simple exclusion process (PASEP), for which
exact solutions are known [33].

Similar to totally asymmetric exclusion processes there are three stationary phases in
PASEP [33]. The LD phase exists for α < β and α < (p −q)/2, and the stationary properties
of this phase can be written as

JLD = α(p − q − α)

p − q
, ρbulk,LD = α

p − q
. (7)

The HD phase can be found for β < α and β < (p − q)/2 with the particle current and bulk
density given by

JHD = β(p − q − β)

p − q
, ρbulk,HD = 1 − β

p − q
. (8)

In the MC phase (α > (p − q)/2 and β > (p − q)/2) the stationary properties are the
following:

JMC = p − q

4
, ρbulk,MC = 1

2
. (9)

Applying these results to our system, it is trivial to show that the LD phase is specified by
α < 2β and α < 1/4 with the particle current and bulk density given by

JLD = α(1 − 2α), ρbulk,LD = 1/2 + α. (10)

Note that, strictly speaking, we cannot call this phase ‘low-density’ since the bulk densities in
both channels are always larger than 1/2. However, the term ‘LD’ refers here to the density
of vertically filled clusters that play the role of ‘effective’ particles. In order not to complicate
the matter we keep the terminology of three phases of asymmetric exclusion processes.

The HD phase exists for α > 2β and β < 1/8 with the following stationary properties,

JHD = 2β(1 − 4β), ρbulk,HD = 1 − 2β. (11)

For α > 1/4 and β > 1/8 we have the MC phase with

JMC = 1/8, ρbulk,MC = 1
2 . (12)

The resulting density profiles for strong coupling limit are shown in figures 2(a), 3(a)
and 4(a), while the phase diagram is outlined in figure 5(a).

Exact solutions via mapping to a single-channel exclusion process can also be found for
strong asymmetric couplings. Let us show this for the case of w1 = 1 and w2 = 0. For the
arbitrary bulk vertical cluster at site i we have P10 = 0, because there should not be the overall
vertical current in the system at large times. It can be argued that the whole lattice 2 is fully
occupied at large times after the system reaches a steady state. If any vacancy appears then it
will be quickly filled by a vertical transition form the upper channel. This observation suggests
that bulk vertical clusters can only be found in two states, {11} and {01} with P00 = P10 = 0.
Note, however, that other cluster states might exist near the boundaries, but they should not
affect the overall dynamics in the system. We associate the fully filled vertical clusters {11}
with ‘particles’, while the vertical clusters {01} can be viewed as ‘holes.’ There is the particle
flux in the upper channel, and there is no current on the lattice 2 and the bulk density in
the channel 2 is always equal to 1. Thus, we mapped the system that couples asymmetric
and symmetric exclusion process into new effective TASEP in the limit of strong asymmetric
coupling.
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Figure 2. Density profiles for the entrance-dominated (LD) phase in a two-channel system that
couples TASEP and SSEP for α = 0.05 and β = 0.75. (a) w1 = w2 = 1; (b) w1 = w2 = 1/3;
(c) w1 = 1 and w2 = 0 and (d) w1 = 0.4 and w2 = 0.25. Lines are theoretical predictions for
bulk densities, while symbols correspond to Monte Carlo simulations: circles represent the upper
(asymmetric) channel, squares are for the lower (symmetric) channel.

The effective entrance rate for the ‘particles’ is equal to αeff = α. However, the exit
process should be considered more carefully. The overall particle flux to leave the channels
can be written as

Jexit = βeffP11 = β(2P11 + P01) = β(1 + P11), (13)

and it should be equal to the bulk current,

Jbulk = P11(1 − P11). (14)

It leads to the following relation for density of fully filled vertical clusters at the end of the
system,

P11 = 1 − β +
√

β2 − 6β + 1

2
, (15)

which also yields the effective exit rate,

βeff = 1 + β −
√

β2 − 6β + 1

2
. (16)

Now, using known results for TASEP we can predict that in the two-channel exclusion system
with strong asymmetric coupling there are three stationary phases. Entrance-dominated low-
density phase exists for α < 1/2 and β > α(1−α)

(2−α)
. Here the stationary properties are

J
(1)
LD = α(1 − α), ρ

(1)
bulk,LD = α. (17)
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Figure 3. Density profiles for the exit-dominated (HD) phase in a two-channel system that couples
TASEP and SSEP for α = 0.75 and β = 0.05: (a) w1 = w2 = 1; (b) w1 = w2 = 1/3; (c) w1 = 1
and w2 = 0 and (d) w1 = 0.4 and w2 = 0.25. Lines are theoretical predictions for bulk densities,
while symbols correspond to Monte Carlo simulations: circles represent the upper (asymmetric)
channel, squares are for the lower (symmetric) channel.

Exit-dominated high-density phase is found for β < 1/6 and β < α(1−α)

(2−α)
with the following

particle current and bulk density on the lattice 1:

J
(1)
HD = β(3 − β +

√
β2 − 6β + 1)

2
, ρ

(1)
bulk,HD = 1 − β +

√
β2 − 6β + 1

2
. (18)

Finally, in the maximal-current phase (for α > 1/2 and β > 1/6) we have

J
(1)
MC = 1/4, ρ

(1)
bulk,MC = 1

2 . (19)

Density profiles for strong asymmetric coupling with w1 = 1 and w2 = 0 are shown in
figures 2(c), 3(c) and 4(c), and the phase diagram is presented in figure 5(c).

The other case of the asymmetric coupling, when w1 = 0 and w2 = 1, can be easily
analyzed if we recall the particle–hole symmetry of the system. The flux of particles moving
from the left to right can be viewed as a flux of holes moving in opposite direction. Then
stationary properties in this case can be obtained from equations (17)–(19) derived above if
we perform the symmetry operations α ↔ β and 0 ↔ 1. In this case, the nonzero particle
current will be found only in the upper (asymmetric) channel, but there will be no particles
and no flux in the bulk of the symmetric lattice.
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Figure 4. Density profiles for the maximum current (MC) phase in a two-channel system that
couples TASEP and SSEP for α = β = 0.75: (a) w1 = w2 = 1; (b) w1 = w2 = 1/3; (c) w1 = 1
and w2 = 0 and (d) w1 = 0.4 and w2 = 0.25. Lines are theoretical predictions for bulk densities,
while symbols correspond to Monte Carlo simulations: circles represent the upper (asymmetric)
channel, squares are for the lower (symmetric) channel.

2.3. Intermediate couplings: approximate theory

When couplings between asymmetric and symmetric exclusion processes are not strong
(w1 < 1 and/or w2 < 1) it is not possible to solve the system exactly via mapping procedure.
Then an approximate theory should be developed. We will use the vertical-cluster mean-
field approach [20, 24, 29] that was successful in description of other two-channel exclusion
processes.

The overall properties of the system can be found by monitoring changes in four vertical
clusters at each site. Assuming that the behavior is uniform along the lattices, the dynamics
of bulk vertical clusters is governed by three independent master equations:

dP11

dt
= (2 − w1 − w2)P10P01 − 2P11P00, (20)

dP10

dt
= w2P01 − w1P10 + 2P11P00 − (2 − w1 − w2)P10P01, (21)

dP01

dt
= w1P10 − w2P01 + 2P11P00 − (2 − w1 − w2)P01P10. (22)
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Figure 5. Phase diagrams of a two-channel system that couples TASEP and SSEP:
(a) w1 = w2 = 1; (b) w1 = w2 = 1/3; (c) w1 = 1 and w2 = 0 and (d) w1 = 0.4 and
w2 = 0.25. Symbols correspond to Monte Carlo simulations, while theoretical predictions are
represented by lines.

At large times the system reaches steady state, implying that dPij

dt
= 0 for i, j = 0, 1. Then

from equations (21) and (22) we can immediately conclude that

w2P01 = w1P10. (23)

This expression can be understood as an equilibrium for vertical transitions between the
channels in the bulk. Then substituting this relation along with the normalization condition
(6) into equation (20) produces

(2 − w1 − w2)
w1

w2
P 2

10 + 2

(
1 +

w1

w2

)
P11P10 − 2P11(1 − P11) = 0. (24)

We expect that, similarly to the cases of strong couplings, there are three stationary phases. To
obtain stationary properties explicitly we need expressions for entrance, exit and bulk currents
through the system,

Jentrance = α(2P00 + P10 + P01), (25)

Jbulk = [P11 + (1 − w1)P10](P00 + P01), (26)

Jexit = β[2P11 + (1 − w1)P10 + (1 − w2)P01]. (27)

Substituting into these relations the values for P01 and P00 from the equilibrium for switching
between the channels (23) and from the normalization (6) we obtain

9
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Jentrance = α

[
2(1 − P11) −

(
1 +

w1

w2

)
P10

]
, (28)

Jbulk = [P11 + (1 − w1)P10](1 − P11 − P10), (29)

Jexit = β

[
2P11 +

(
1 − 2w1 +

w1

w2

)
P10

]
. (30)

The general strategy for solving the system is the following. From equation (24) we
express P10 in terms of P11 and then all stationary quantities will depend only on one variable.
The conditions for existence and dynamic properties of entrance-dominated LD phase and
exit-dominated HD phase can be found from the condition of the stationarity of the current.
The MC phase can be determined by solving ∂Jbulk

∂P11
= 0. The bulk densities in each channel

can be calculated from

ρ
(1)
bulk = P11 + P10, ρ

(2)
bulk = P11 + P01. (31)

As was mentioned above, the important property of the system is the particle–hole
symmetry. For general coupling between the channels, the flow of particles in one direction
is identical to transport of the holes in the opposite direction. Then all dynamic properties
of the system can be obtained by considering the holes as new ‘particles’ and changing
0 ↔ 1, w1 ↔ w2 and α ↔ β∗, where from equations (25) and (27) it follows that

β∗ = β
2P11 + (1 − w1)P10 + (1 − w2)P01

2P11 + P10 + P01
. (32)

This result is due to the fact that exiting from the channels, in contrast to entering the system,
depends on the state of the vertical cluster at last sites. It can be shown that for symmetric
couplings (w1 = w2 = w),

β∗ = β
[1 − 4β +

√
1 − 8wβ + 16wβ2]

2(1 − 2β)
. (33)

The particle–hole symmetry allows us to significantly reduce calculations of stationary
properties in the two-channel coupled systems.

We now proceed to analyze symmetric couplings with w1 = w2 = w < 1. The
equilibrium for vertical transitions gives us P01 = P10 and equation (24) simplifies into

(1 − w)P 2
10 + 2P11P10 − P11(1 − P11) = 0, (34)

which yields the following solution,

P10 =
√

P11[1 − w + wP11)] − P11

1 − w
. (35)

The properties of LD phase can be computed from the condition Jentrance = Jbulk which leads
to

P11 =
√

(1 − w)2 + 16wα2 − (1 − w)

2w
. (36)

The expression for the current can be written in terms of P11 as

JLD = 2α
[1 − w + wP11 − √

P11(1 − w + wP11)]

1 − w
, (37)

while the bulk densities in both channels are equal to each other, and they are given by

ρ
(1)
bulk = ρ

(2)
bulk =

√
P11[1 − w + wP11)] − wP11

1 − w
. (38)
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Substituting equation (36) into equations (37) and (38) we obtain

JLD = α

1 − w
[
√

(1 − w)2 + 16wα2 + (1 − w) − 4α], (39)

and

ρ
(1)
bulk = ρ

(2)
bulk = [(1 − w) + 4α −

√
(1 − w)2 + 16wα2]

2(1 − w)
. (40)

Similarly, the properties of HD phase follow from the relation Jexit = Jbulk, from which
we obtain

P11 = 2w(1 − 2β) − 1 +
√

1 − 8wβ + 16wβ2

2w
. (41)

The stationary current can be written as

JHD = 2β
√

P11(1 − w + wP11), (42)

and the bulk densities are the same as in equation (38). Using equation (41) the explicit
expressions for the current and densities are the following:

JHD = β(1 − 4β +
√

1 − 8wβ + 16wβ2), (43)

ρ
(1)
bulk = ρ

(2)
bulk = 1 − 2β. (44)

The surprising result is that the bulk densities in HD phase, in contrast to the LD phase, are
independent of the coupling strength. However, it can be understood using the particle–hole
symmetry.

In the MC phase the current can be derived from equation (29),

JMC =
√

P11(1 − w + wP11)
[1 − w + wP11 − √

P11(1 − w + wP11)]

1 − w
. (45)

From the condition of maximum of the current, ∂Jbulk
∂P11

= 0, we can obtain the explicit form of
P11 for every value of the inter-channel transition rate w,

P11 = 3w − 2

6w
+

64 − 144w + 144w2

192w
3
√

Y
+

3
√

Y

12w
, (46)

where

Y = 8 − 27w2 + 27w3 + 3
√

3
√

16w − 68w2 + 115w3 − 90w4 + 27w5. (47)

Boundaries between stationary phases can be determined from the particle currents for each
regime at transition lines. For example, HD and LD phase are separated by a curve given by

α(1 − w − 4α +
√

(1 − w)2 + 16wα2)

1 − w
= β(1 − 4β +

√
1 − 8wβ + 16wβ2). (48)

Note, that when w = 1 we recover the results for strong symmetric coupling obtained in
section 2.2, as expected.

For general case of intermediate couplings between symmetric and asymmetric exclusion
channels (w1 �= w2) we utilize the same approach. The solution of equation (24) gives us

P10 =
−P11(w1 + w2) +

√
(w1 + w2)2P 2

11 + 2w2P11
(
2w1 − w1w2 − w2

1

)
(1 − P11)

w1(2 − w2 − w1)
. (49)

11



J. Phys. A: Math. Theor. 41 (2008) 465001 K Tsekouras and A B Kolomeisky

Then this equation can be used to express all stationary properties in terms of only one variable,
P11, and explicit calculations can be done as described above for the symmetric coupling.

3. Monte Carlo simulations and discussions

We presented two theoretical approaches to investigate parallel coupling of TASEP and SSEP.
In the first approach, the mapping of two-channel systems into effective single-lane exclusion
models with known stationary properties has been utilized for strong couplings. This provides
an exact description of all dynamics at large times. However, when the strength of the
couplings between the channels was not large, we utilized the approximate mean-field method
that neglects horizontal correlations in the system. In order to check the validity of the
approximate method and to examine theoretical predictions we performed extensive Monte
Carlo computer simulations.

The obtained theoretical results are valid only in thermodynamic limit, L → ∞. In
our simulations we used L = 1000 for each channel, although in several cases we checked
our computations also for lattices with L = 5000. It was found that computed dynamic
properties do not depend on the size of the lattices, suggesting that finite-size effects are
negligible in our simulations. The density profiles and the particle currents were calculated
by averaging over trajectories that had between 2 × 106 and 108 Monte Carlo steps. To ensure
that the system reached the stationary state, first 5% of the total number of steps were ignored
in averaging procedures. Phase transitions between phases were determined by observing
the abrupt changes in the density profiles for transitions between HD and LD phases. For
boundaries between HD or LD and MC phases the transition points were determined by
observing the saturation of the particle current. These procedures ensure that phase border
lines are determined with precision within 0.01 units of α and β.

Density profiles for different symmetric and asymmetric couplings between TASEP and
SSEP channels are presented in figures 2–4. In all situations excellent agreement between
Monte Carlo computer simulations and theoretical predictions is observed for bulk densities.
Different behavior is found for symmetric and asymmetric couplings between the lattices.
Equal vertical transitions rates make the properties of both channels almost the same, with
slight differences near boundaries, especially for LD (figures 2(a) and (b)) and for MC
phases (figures 4(a) and (b)). Increasing the strength of the symmetric coupling puts more
particle in the system, and even for the LD phase the bulk densities are larger than 1/2: see
figures 2(a) and 4(a). Surprising results are found for the HD phase where bulk densities are
functions of only the exit rate β and they are independent of the strength of the coupling.
For asymmetric coupling densities in the upper and lower channels differ significantly. When
the vertical transition rate from the TASEP to SSEP is larger it leads to larger densities
in the symmetric lattice, and in the strong coupling limit (w1 = 1 and w2 = 0) it even fills
the second channel completely in all phases. For intermediate asymmetric couplings both
channels behave qualitatively similarly.

Phase diagrams for a two-channel systems that couples TASEP and SSEP are illustrated
in figure 5. In all cases the system can exist in one of three stationary phases: the entrance-
dominated low-density phase, the exit-dominated high-density phase and the maximal-current
phase specified by bulk dynamics. Comparison between computer simulations and theoretical
calculations suggests that our theoretical method quantitatively correct in description of
stationary properties of this system. However, there are several small deviations between
theoretical predictions and Monte Carlo results, especially for LD/MC phase transitions line
for intermediate couplings (see figure 5(d)), indicating that correlations inside the lattice are
important for some ranges of parameters. It can be seen that symmetric couplings between the
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Figure 6. Particle current through a two-channel system that couples TASEP and SSEP as a
function of the vertical transition rate w2 for the fixed vertical transition rate w1 = 1 and for
α = β = 0.75. Symbols are from Monte Carlo simulations and lines are the result of theoretical
calculations.

channels decrease the phase volume for the high-density phases, while asymmetric couplings
have the same effect on the LD phases. In the case of unequal vertical transition rates and
for intermediate symmetric couplings the boundaries between the LD and HD phases are not
linear, as found for strong symmetric couplings, but rather slightly curved.

Inter-channel particle transitions influence the overall current through the system as shown
in figure 6 for the MC phases. For any symmetric couplings the particle fluxes through the
system will go down, as was found before in the case of two-channel TASEP systems [20].
However, breaking the symmetry in the vertical transition rates actually leads to increase
in the particle current. As illustrated in figure 6, for w1 = 1 lowering the transition rate
w2 from 1 to zero increases the particle current in two times. Similar behavior is observed
for other stationary phases. Since the two-channel system that couples asymmetric and
symmetric exclusion processes might be relevant for understanding transport of motor proteins
along protein filaments [11], we can argue that these observations might be important for
understanding motor protein’s dynamics. One can suggest that the flux of molecular motors
can be controlled by modifying the association and dissociation rates to protein filaments, e.g.,
via changing the ionic strength, temperature or viscosity.

It is important to discuss the role of strong coupling limits in our theoretical approach.
First of all, these limiting cases are related to motor proteins dynamics. The situation of
w1 = w2 corresponds to high concentration of motor proteins in the surrounding solution,
low concentration of ATP molecules that fuel the biased motion of molecular motors, and
low binding energy to protein filaments. The case of w1 = 1 and w2 = 0 also corresponds
to low [ATP] and low binding energy to protein filaments, while keeping low concentration
of motor proteins in the bulk solution. Finally, the case of w1 = 0 and w2 = 0 describes
the situation with high [ATP], high concentration of motor proteins in the bulk solution, and
large binding energies to protein filaments. Exact solutions allow us to fully describe motor
proteins dynamics in these cases. In addition, exact solutions in these limits are important
for development of a theoretical description for intermediate couplings since they provide
benchmark results that any approximate models of coupled transport must satisfy.

It is also interesting to compare our theoretical predictions with results of theoretical
studies of motor proteins transport through more realistic tube-like compartments [11]. Our
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predictions for phase diagrams, particle densities and currents are similar. However, the
agreement between mean-field calculations and computer simulations in [11] are mostly
qualitative, while in our approach exact results can be derived in several important limits and
our mean-field approximations almost quantitatively coincide with Monte Carlo results. In
addition, our theoretical picture allows us to suggest mechanisms that control motor protein
dynamics.

4. Summary and conclusions

We investigated the two-channel system that couples asymmetric and symmetric exclusion
processes for different inter-channel transition rates in steady-state regime. In the limit of
strong symmetric coupling, w1 = w2 = 1, the exact description of particle dynamics is
achieved by mapping the two-channel system, consisting of totally asymmetric and symmetric
exclusion processes, into an effective one-channel partially asymmetric exclusion process
with known stationary properties. Exact solutions are also obtained in the limit of strong
asymmetric inter-channel rates (w1 = 1 and w2 = 0, or w1 = 0 and w2 = 1). In this case the
two-channel system was mapped into a single-lane totally asymmetric process with explicit
description of all dynamic properties.

The two-channel system with coupled TASEP and SSEP for intermediate vertical
transition rates has been analyzed via an approximate theoretical approach. In this method
the dynamics of vertical inter-channel transitions is fully accounted, while the correlations
along the horizontal lattices are neglected. The vertical-cluster mean-field approach allowed
us to calculate analytically or numerically exactly particle currents, bulk densities and
phase diagrams. The predictions of the approximate method are in excellent agreement
with extensive Monte Carlo computer simulations. Theoretical calculations and computer
simulations indicate that the strength and symmetry in the vertical transition rates have a
strong effect on the overall particle dynamics. Equal inter-channel transition rates symmetrize
the particle properties in both channels. Symmetric couplings also lower the particle fluxes
and increase the bulk densities. Asymmetric inter-channel transitions generally lead to similar
qualitative properties in both channels, although with different values of bulk densities and
currents. Asymmetric couplings also increase the transport capability of the system.

We discussed the relevance of the results of this investigation for understanding
mechanisms of motor protein’s motion along the protein filaments. It can be concluded
from our theoretical analysis that dynamics of motor proteins can be controlled and modified
by changing the association and dissociation rates. It will be interesting to test our predictions
in experimental studies.
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